About me
I am a Quant Research Lead at Point72, applying NLP to financial data.
Previously, I was an AI Resident at Google Research NYC, working on NLP and before that a research scientist at BenevolentAI. I hold a MS in Data Science from New York University, where I conducted research in the ML² group at CILVR, working with Sam Bowman. I have also worked on Computer Vision for Medical Imaging with Krzysztof Geras and Kyunghyun Cho.
Before that, I did a double degree in France between HEC Paris (Management) and ENSAE ParisTech (Statistics).
Publications
Natural Language Processing
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Nihal V Nayak, Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Févry, Zaid Alyafeai, Manan Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu, Gunjan Chhablani, Han Wang, Jason Alan Fries, Maged S Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Mike Tian-Jian Jiang, Alexander M Rush ACL 2022 2022 Paper - Code
Multitask Prompted Training Enables Zero-Shot Task Generalization
Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf, Alexander M Rush
ICLR 2022, Spotlight 2021
Paper - Code & DemoDo Transformer Modifications Transfer Across Implementations and Applications?
Sharan Narang, Hyung Won Chung, Yi Tay, William Fedus, Thibault Févry, Michael Matena, Karishma Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong Lan, Yanqi Zhou, Wei Li, Nan Ding, Jake Marcus, Adam Roberts, Colin Raffel
EMNLP 2020
2021
PaperRethinking embedding coupling in pre-trained language models
* Hyung Won Chung, * Thibault Févry, Henry Tsai, Melvin Johnson, Sebastian Ruder
2020
ICLR 2021
PaperEntities as experts: Sparse memory access with entity supervision
Thibault Févry, Livio Baldini Soares, Nicholas FitzGerald, Eunsol Choi, Tom Kwiatkowski 2020
EMNLP 2020
Paper - TalkEmpirical Evaluation of Pretraining Strategies for Supervised Entity Linking
* Thibault Févry, * Nicholas FitzGerald, Livio Baldini Soares, Tom Kwiatkowski
AKBC 2020
Paper - TalkLearning Cross-Context Entity Representations from Text
Jeffrey Ling, Nicholas FitzGerald, Zifei Shan, Livio Baldini Soares, Thibault Févry, David Weiss, Tom Kwiatkowski 2019
PaperSentence Encoders on STILTs: Supplementary Training on Intermediate Labeled-data Tasks
* Jason Phang, * Thibault Févry, Sam Bowman
2018
Paper - Code & ModelsUnsupervised Sentence Compression using Denoising Auto-Encoders
* Thibault Févry, * Jason Phang
CoNLL 2018
Paper - Code - Poster - NYU Blog
Medical Imaging
Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening
Nan Wu, Jason Phang, Jungkyu Park, Yiqiu Shen, Zhe Huang, Masha Zorin, Stanisław Jastrzebski, Thibault Févry, Joe Katsnelson, Eric Kim, Stacey Wolfson, Ujas Parikh, Sushma Gaddam, Leng Leng Young Lin, Kara Ho, Joshua D. Weinstein, Beatriu Reig, Yiming Gao, Hildegard Toth, Kristine Pysarenko, Alana Lewin, Jiyon Lee, Krystal Airola, Eralda Mema, Stephanie Chung, Esther Hwang, Naziya Samreen, S. Gene Kim, Laura Heacock, Linda Moy, Kyunghyun Cho, and Krzysztof J. Geras, Preprint, 2018
IEEE Transactions of Medical Imaging, 2019
Best Paper @ICML 2019 AI for Social Good
Paper - Code & Models - Poster - MediumImproving localization-based approaches for breast cancer screening exam classification
Thibault Févry, Jason Phang, Nan Wu, S. Gene Kim, Linda Moy, Kyunghyun Cho, Krzysztof J. Geras
MIDL 2019 Extended Abstract
Paper - Poster